## $10^{\text {th }}$ CLASS

## MATHEMATICS

```
PAPER - I
PART - A & B
```



Instructions: 1) Answer the questions under Part-A on a separate answer book
2) Write the answer to the Questions under Part-B on the question paper itself \& attach it to the answer book of Part-A

## Time: 2 Hours

PART - A
Marks: 35

## SECTION - I

$5 \times 2=10$
Note: 1) Answer any 5questions choosing at least 2 from each of the following two groups A \& B
2) Each question carries 2 Marks.

## GROUP - A

( Real Numbers, sets, Polynomials, Quadratic Equations)

1. Write the algorithm of $8 \times 32$ in the form of $\log x+\log y$
2. If $A=\{6,7,8,9,10\}$ and $B=\{9,10,11,12\}$ then find $A-B$ and $B-A$, are they equal?
3. Find the zeroes of polynomial $p(x)=2 x+1$
4. Find the roots of the equation $x^{2}-3 x-10=0$

(Linearequations in two variables, Progressions, Co-ordinate geometry)
5. Half of the perimeter of a rectangular garden whose length is 4 m more than its width is 36 m . Find the dimensions of the garden.
6. How many Two - digit numbers are divisible by 3 .
7. Write G.P. if $\mathrm{a}=256 ; \mathrm{r}=-\frac{1}{2}$
8. Find the points on the $x$ - axis which is equidistant from $(2,-5)$ and $(-2,9)$

## SECTION - II

Note: 1 . Answer any 4 of the following questions.
2. Each question carries 1 Mark.
9. Determine the value of $\log _{3} 243$
10. If $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{1,2,3,5,6\}$ then find $\mathrm{A} \cap \mathrm{B}$
11. Define linear equations in two variables.
12. Write the standard form of quadratic equation in variable x .
13. $2,4,8,16$, $\qquad$ form an A.P. ? If so find common difference.
14. Find the mid point of the line segment joining the points $(3,0)$ and $(-1,4)$

## SECTION - III

$4 \times 4=16$
Note: 1) Answer any 4 questions choosing at least 2 from each of the following two groups A \& B
2) Each question carries 4 Marks.

## GROUP - A

( Real Numbers, sets, Polynomials, Quadratic Equations)
15. Prove that $\sqrt{2}+\sqrt{3}$ is irrational.
16. i) If $A$ and $B$ are two sets such that $A \subset B$ then what is $A \cup B$
ii) $\mathrm{A}=\{0,2,4\}$ find $\mathrm{A} \cap \phi$ and $\mathrm{A} \cap \mathrm{A}$.
17. Find the zeroes of the polynomial $\times 2-3$ and verity the relationship between the zeroes and the coefficients.
18. The difference of squares of two numbers is 180 . The squares of the smaller number is 8 times the larger number. Find the two numbers.

## GROUP-B

(Linear equations in two variables, Progressions, Co-ordinate geometry)
19. Solve the following equations
$\frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2$ and $\frac{4}{\sqrt{x}}-\frac{4}{\sqrt{y}}=-1$
20. The sum of a two digit number and the number obtained by reversing the digits is 66 . If the digits of the number differ by 2 , find the number. How many such numbers are there
21. Find the $31^{\text {st }}$ form of an A.P. whose $11^{\text {th }}$ form is 38 and $16^{\text {th }}$ is 73 .
22. Find the co-ordinates of the point which divides the line segment joining the points $(4,-3)$ and $(8,5)$ in the ratio $3: 1$ internally.

## SECTION - IV

$$
1 \times 5=5
$$

Note: 1) Answer one question from the following.
2) Each question carries 5 Marks.
(Polynomials, Linear equations in two variables)
23. Draw the graph of $p(x)=x^{2}-6 x+9$ and find zeroes and verify the zeroes of the polynomial.
24. Solve the pair of linear equations graphically $2 x-y=5,3 x+2 y=1$

## PART - B

Model Paper - 3
Marks: 15
I. Write the capital letter showing the correct answer for the following questions in the brackets provided against them.

1. Which one is terminating decimal
A. $\frac{7}{40}$
B. $\frac{17}{18}$
C. $\frac{9}{11}$
D. $\frac{14}{23}$
2. $\log 10+2 \log 3-\log 2$ value
A. $\log 90$
B. $\log 47$
C. $\log 45$
D. $\log 30$
3. What is the degree of the polynomial of $\sqrt{ } 2 x^{2}-3 x+1$
A. $\sqrt{ } 2$
B. 2
C. 3
D. 1
4. Find the sum of the zeroes of cubic polynomial $x^{3}+4 x^{2}-5 x-2=0$
A. -5
B. 2
C. -4
D. -21
5. $6 x-3 y+1=0,2 x-y+x=0$ lines are
A. Intersecting lines
B. Parallel lines
C. co-incident lines
D. perpendicular lines
6. Find the roots of $5 \mathrm{x} 2-7 \mathrm{x}-6=0$
A. $2,-\frac{3}{5}$
B. $-2, \frac{3}{5}$
C. 4.5 units
D. 200 units
7. The product of two consecutive positive integers is 306 . Represent in the form of equation to find the integers.
A. $x^{2}+x+306=0$
B. $x^{2}+x-306=0$
C. . $x^{2}+2 x+306$
D. . $x^{2}-x-306=0$
8. In the A.P. series $a_{12}=37, d=3$ then find the value of $S_{12}$
B. 2
C. -4
D. -21
9. $(-5,6)$ is the point on the circle and centre of the circle is $(3,2)$ then find the radius of circle.
A. 45 units
B. $4 \sqrt{ } 5$ units
C. 4.5 units
D. 200 units
10. Which of the following points are co-linear points
A. $(5,2),(3,-5),(-5,-1)$
B. $(6,-6),(3,-7),(3,3)$
C. $(1,-1),(2,3),(2,0)$
D. $(2,0),(1,2),(-1,6)$
II. Fill in the blanks with suitable answers
11. The last digit in $6^{\mathrm{n}}$ end with $\qquad$ when n is natural number.
12. $5-\sqrt{ } 3$ is a $\qquad$
13. The roster form of the set $\{x: x$ is a natural number and $x$ divides 6$\}$ is $\qquad$
14. $A=\{3,4,5,6,7\} ; B=\{1,6,7,8,9\}$ then $n(A \cup B)=$ $\qquad$
15. If $p(x)$ is polynomial in $x$ and if ' $k$ ' is a real number, the value of $p(k)=0$ then ' $k$ ' is called. $\qquad$ of the polynomial.
16. The graph of $a x^{2}+b x+c$ intersects $x$-axis at $A$ and $A$ then, no. of zero of the polynomial is. $\qquad$
17. The sum of the zeroes of the polynomial $x^{3}+4 x^{2}-5 x-2$ is $\qquad$
18. The sum of first 50 positive integers is $\qquad$
19. If $\theta$ is angle made by the line width $x$-axis, then slope ' $m$ ' $=$ $\qquad$
20. If $\mathrm{a}, \mathrm{b}$ and c are the sides of the triangles, then area of the triangle $(\mathrm{A})=$ $\qquad$
III. For the following questions under Group-A choose the correct answer from the master list Group-B and write the letter of the correct answer in the brackets provided against each item $10 \times \frac{1}{2}=5$

## A.

GROUP-A
21. The slope of line formed with
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and ( $\mathrm{x}_{2}, \mathrm{y}_{2}$ )
22. The centroid of triangle formed
23. The midpoint of line formed with $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is
24. The distance between the points
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is
25. The co- ordinates of a point which divides the line segment joining of $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and 2 $(\mathrm{x} 2, \mathrm{y} 2)$ in the ratio of $\mathrm{m} 1: \mathrm{m}$

## GROUP - B

A) $\left[\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \quad \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right]$
B) $\left[\begin{array}{cc}\frac{x_{1}+x_{2}}{2} & \frac{y_{1}+y_{2}}{2}\end{array}\right]$
C) $\left[\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}+m_{2}} \quad \frac{m_{1} y_{2}-m_{2} y_{1}}{m 1+m 2}\right]$
D) $\left[\frac{y_{2}-y_{2}}{x_{2}-x_{1}}\right]$
E) $\left[\begin{array}{cc}\frac{x_{1}+x_{2}+x_{3}}{3} & \frac{y_{1}+y_{2}+y_{3}}{3}\end{array}\right]$
F) $\left[\frac{y_{2}+y_{1}}{x_{2}-x_{1}}\right]$
G) $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
B.
26. Product of zeroes of the polynomial $x 2-2 x-8$
$\begin{array}{lll}{[ } & \text { I) } 20\end{array}$
27. The sum of the zeroes of $3 x^{2}-5 x^{2}-11 x-3 \quad[\quad] \quad$ J) -2
28. Common root of $2 \mathrm{x} 2+\mathrm{x}-6=0$
$\begin{array}{ll}{[\quad]} & \text { K) } 0\end{array}$
29. $P(x): 3 x^{2}-5 x-2$ value at $x=-2$
[ ]
L) 2
30. Discriment of $3 x 2-2 x+\frac{1}{3}$
$\begin{array}{ll}{[ } & \text { M) }-8\end{array}$ N) $\frac{5}{3}$
O) 4
P) $-\frac{5}{3}$

